Improving Dynamical Systems Benchmarking: Extending

Libraries and Enhancing OOD Capabilities.

Introduction

Dynamical systems are mathematical models that
describe how a state changes over time.
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Extending Systems Library: Process & Results

Adapted Gilpin’s chaotic dynamical systems database into DynaDojo, vastly

' They exhibit complex behaviors that are difficult to

o . .
predict and control due to the lack of predefined
equations. Solution is data-driven ML, but its
effectiveness relies on selecting the appropriate
algorithm, so we need benchmarking!

What is

An open and extensible benchmarking platform for ML
algorithms.
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Select your Algorithm Select System to evaluate on Instantiate a Challenge Get Results
(with optional control)
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Previously, Dynadojo had only 20 systems and relied on
known equations to compute trajectories.
However, research is also osystem
interested in complex systems

that lack known equations but

have precise data.

Goal was to build the
functionality to incorporate
non-procedurally generated
dynamical systems.
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expanding the benchmarking and analysis options by 100+ systems.
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Compatible with DynaDojo algorithms and Fixed Complexity challenge.

What is Out-of-distribution (OOD) Data for Time Series?

Covariate shifts/Domain generalization: Train and test on disjoint sets of domains.

Train (sketch,cartoon) Test (unseen domains)
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OOD Generation

Principal Component Analysis (PCA): A dimensionality reduction
technique that identifies the directions (principal components)

x2

capturing the most variance in the data.

Key Mathematical Concepts:

e Maximum Variance: corresponds to the largest singular value in 2.

e Direction of Maximum Variance: given by the corresponding columnin V.
00D IC Generated

Procedure for OOD IC Generation:

Select Principal Components: choose components that

explain at least 90% of the variance.

Identify Remaining Components: remove the

selected components from the total set.

Generate OOD Points: perturb data along these directions

of minimal variance.

OOD Detection

Mahalonobis

Mahalanobis Distance: measures how far a point is from
a distribution, considering correlations between

variables. Unlike Euclidean distance, it accounts for the

data’s structure.

Mathematically, between a point x and a distribution

with mean vector g and covariance matrix .§ it is defined as:

du(Z,Q) = /(@ — B)TS7' (@ — f).

Procedure for OOD IC Detection:

00D IC Detected

- Calculate the mean and inverse covariance matrix from the
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in-distribution (IND) initial conditions.
- Compute Mahalanobis distances for each IND trajectory.
- Set a threshold for OOD detection based on the
Mahalanobis distances of IND data.
- Classify initial conditions based on whether their

Mahalanobis distance is below or above the threshold.

' True OOD detection should be performed on the full

trajectories. To fit mahalanobis distance on trajectories

accurately we need to extract specific features.

- 2 Haar Wavelet Transform: extract features from

- e time series trajectories by decomposing the
0 - | 0 05 signals into approximation and detail coefficients
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LA at multiple levels. Chosen for its ability to
capture both spectral and temporal details, it
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(differences between consecutive data points).
These features were then used for
out-of-distribution detection.
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Next Steps

Adversarial Training: Implement an adversarial learning framework where
PCA-based OOD generation and Mahalanobis distance detection with Haar
wavelet transform are iteratively trained against each other to enhance both
generation and detection accuracy.

Static Dataset OOD Handling: Extend the framework to handle cases
where OOD data availability is unknown, ensuring robust OOD detection
even in datasets without prior information about OOD samples.
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