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Project Overview Datasets & Metrics

Methods & Experiments

Results
● Motivation: Vision-Language-Action Model (VLA) 

performance in robotics has improved through 
the application of speculative decoding and 
applying state-space models. We were curious 
about applying both of these techniques to 
further improve VLA performance. 

● Project: We trained a Mamba draft model and a 
modified roboMamba model, and benchmarked 
them against SpecVLA’s Llama draft model. 

● Results: Original paper failed to replicate and 
Mamba draft model achieved no significant 
speedup over Llama draft model on average

● We use the LIBERO-GOAL benchmark, which is a kitchen environment with 10 different tasks

● We run OpenVLA, producing observation–language–action triplets. We filter out no-ops

● Each example contains a 256×256 RGB image, a natural-language instruction, OpenVLA 

vision-encoder hidden states (sequence length × 4096), token embeddings, and a ground-truth 

discrete action label (7D end-effector control quantized into 256 bins per dimension).

● Our main metric is seconds per episode. Since strict speculative decoding rejects errors from 

the draft model, overall speed represents the speed and accuracy of the draft model.

Model / Approach
Train Acc. Avg. Time 

(s)
Std. Dev. (s) Accuracy 

(%)

Autoregressive - 23.38 13.01 69%

Speculative (Llama 
Draft)

97.63% 22.61 12.15 71%

Speculative (Mamba 
Draft)

96.86% 23.29 12.49 71%

● The verifier model is OpenVLA, a 7B-parameter vision-language-action model that 

autoregressively predicts discrete robot action tokens. 

● We evaluate two draft models: (1) a LLaMA-based transformer decoder and (2) a Mamba 

state-space model, both trained to predict future hidden states

● We train the Mamba model from scratch with model dimension of 4096, state

● dimension of 16, expansion factor of 2, and bf16 instead of fp16 to avoid RNN overflow. 

● We integrate our draft model into existing speculative decoding and EAGLE sampling 

frameworks

Mamba draft model vs replication of SpecVLA autoregressive and draft 
model approaches

Discussions & Future Research
Discussions:
 

● We failed to replicate SpecVLA's reported 1.09x speedup, achieving only 

1.03x with their Llama draft model. 

● Our Mamba draft model was in the same ballpark as their Llama draft 

model.

● Robot actions are more information-dense than language tokens, making 

accurate speculation challenging. 

● Suggests architectural choice matters less than the fundamental difficulty 

of predicting robot actions

● Training accuracy may be high due to low diversity of LIBERO task suite

Future Research:
 

● Analyze Mamba's acceptance length patterns to better understand 
accuracy-speed trade offs

● Investigate the high variance in per-task performance across models. 
● Try finetuning  Mamba model that is already pretrained on VLAs 

(RoboMamba)
● Developing a simplified testing harness that can isolate and benchmark 

draft models independently of the complex VLA codebase 
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Background
Speculative Decoding:

● Very effective in LLMs with 2-3x speedup on same 
hardware with identical outputs (Google)

● Small draft model generates candidate sequences  
during serial autoregressive generation

● Large verifier model processes entire sequence in 
one forward pass, accepting multiple tokens or 
falling back to producing one token

● Newly applied to VLAs in Sept 2025 conference 
paper (SpecVLA, EMNLP 25). They had low 
success and had to allow the output to shift; 
ideally the output is the same

● Language / LLM  has lots of redundancy; robotics / 
VLA  is more complicated
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